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Study of the Initiation Phase of Thick, 
Metallic Liners at 1MA



• Does a gap in the cathode power feed influence the initiation of liners?
• Present precision liner mounting system is nearly a ‘push fit’ at the cathode: a 25m gap 

is left around the liner

Motivation: Power Feed Gap

What might be the issue?
• Resistive phase leads to heating at electrical contact point
• If gap is closed in non-uniform fashion, this may be reflected in the plasma 

formation, and liner acceleration profile



• What can we learn about Z scale liners on a MA device?

Differences: total energy deposition, peak B-fields, voltages, etc

Scaling important (e.g. Ryutov et al, Phys. Plasmas 19, 062706 (2012) 

Previous and present work has proven interesting in terms of basic physics

Motivation: MagLIF liners at 1 MA

T. Awe et al, Phys. Plasmas 18, 056304 (2011)
B‐field threshold of 2.2MG for surface plasma formation 

I. C. Blesener et al; Streak photography of 0.6‐25m 
Cu showed threshold current density rate of 
3.5x1016 A/cm2/s for rapid initiation (~1ns)



• Liners are 6mm or 3mm in diameter, and 300 m or 150 m in thickness
• All below the Awe B-field threshold, and the Blesener current density threshold for

uniform plasma formation
• Alignment of liner to cathode power feed done manually through electrical continuity test
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• 1 MA, in 100 or 240ns

Brent Blue, General Atomics
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Gated Optical Emission Imaging

• Localized emission observed at
early time in most cases

• Plasma generated at gap
expands away from liner

• Gated (5ns) optical imaging
camera (on loan from Sandia)

• Relatively complete light-up
of liners observed in some
cases
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Optical Streak Measurements 

100mm cathode gap no cathode gap

• Streak images show variability in emission with nominally identical loads and gaps

• Multiple emission regions often observed at cathode

• Loads without a gap seem to show much later light up

• Uniform light up of liners not observed until very late time (>500 ns) for 6mm diameter liners



Voltage probe measurements  

J. B. Greenly et al, Rev. Sci. Instrum. 79, 073501 (2008)
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• For wire arrays, resistive voltage at wire
breakdown observed

• Measurements taken for set-ups with gaps from 0
to 400 m; no corresponding voltage peak found
for liners

• Perhaps upper limit on breakdown voltage is ~10
kV

• Thermal processes likely very small: starting at
RT, and liner remains cool through experiments

• Using limits above, field emission again likely
small, although enhancement at protrusions may
play a role.

• Rapid cathodic needle growth?
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Magnetic probe measurements 

(schematic)
• Probes are 0.1mm2 active area, and placed 0.5 mm from

liner inner surface at mid-plane

• Probes set up to give positive signal if current centered
at axis.

• No measurements for 300m, 6mm liners

• Signals recorded for 150 m, 6mm and both 300 m
and 150 m, 3mm liners
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1D MHD Gorgon Simulations

• Simulations completed for the smaller diameter Al 
liners (3.05 mm diameter) where bdot signals were 
most clearly observed in the experiments

• Thicknesses of 150 m and 300 m examined for a 
typical COBRA current drive

• 2 micron cell size, Al EOS, and Lee-More-Desjarlais
resistivity model

Evolution of the 3.05mm diameter, 150m 
thick Al liner
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3.05 mm diameter, 300um thick Al liner
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Comparison of Simulation to Experiments 

• Generally, the 1D simulations do a reasonable job of the form and magnitude of the signals
• Note that the simulation use an ideal current contact
• Experimental variability is an issue 
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Comments for Z and simulations 
• Machined surface perturbations do not seem to disappear under local melting at 1 MA

• Tumbling of liners gives random surface
perturbations (c.f. machined striations)
through oxidization of the Al surface

SEM images of Al 6160
targets machined at Cornell
University, x1500 of pre- and
post-shot liner target
(Courtesy of Cornell Center
for Materials Research
(CCMR) though award NSF
DMR 1120296)

• Tumbling of liners gives random surface
perturbations (c.f. machined striations)
through oxidization of the Al surface



• Power feed gaps do lead to sparks non-uniform azimuthally

• Can also lead to relatively uniform optical emission

• Reasonable agreement between 1D simulation and experimental bdot
measurements, as well as qualitative agreement on low plasma formation at outer
and inner surfaces

• Bdot measurements indicate variability in experimental signal – possibly due to
azimuthally non-uniform current initiation

• Needs more investigation: next we will seek a causal link between plasma formation
and B-field penetration.

Conclusions 


